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Abstract —Bounds of vibration encrgy are given in relation to a residual functional measuring the
degree of approximation of the vibrution fields, and a factor that cun amplify or attenuate the
uncertainty bounds. The amplification of energy uncertainty is considerable near resonance
frequencics,

Assuming a statistical distribution of the crror of description of the vibrations over the
cigenmaodes of the medium leads to a reduction in the uncertainty bounds, espectally when the error
is distributed over a large number of modes.,

The bounds of energy can be used as a criterion of convergence for modal expansion. The
application to acoustic response of a squiare room shows that, for a given modal expansion, the
higher the energy level the better the convergence.

LOINTRODUCTION

The prediction of continuous media vibrations, consists of the calculation of stress and
displacement ficlds resulting from forees excitations. Generally, approximations of these
ficlds are obtained, after which the vibration state is imperfectly deseribed. In such situations
the energy caleulated from approximate solutions, represents the exact vibration cnergy
with uncertainties. The atm of this paper is to provide refations between uncertainty bounds
of energy and a measure of the imperfection of vibration ficlds description.

The association of uncertainty bounds with approximate solution has especially been
used to give bounds for eigenfrequencies (see, for example, Fichera, 1965 ; Weinstein and
Stenger, 1972 Finlayson, 1972). In particular, the method used in this paper has been
previously applied to cigenfrequencies’ bounding by Guyader (1987). In contrast, appli-
cation of this idea to vibration responses has not been used so much. However, it is possible
to mention papers by Skudrzik (1980, 1987), on the bounding of input admittance on
resonance and anti-resonance, and the works of Popplewell and Youssef (1979) and
Popplewell er af. (1981), giving response maxima of vibrating systems excited by im-
perfectly known forees. The method used in this study is based on the following ideas: a
continuous medium is considered, for which the exact solution perfectly describes the
vibration behavior; this will be called ““the reference problem™. A functional is associated
with each stress and displacement fields in order to measure how these fields verify the
refercnce problem cquations. [Works of Nayroles (1971) and Ladeveze (1975) have been
used as a starting point to construct the functional.] Then the bounds of encrgy are
related to the functional value.

The generad case is treated first, then two specific situations are studied :

—The casc where the imperfection of description can be distributed over the vibration
modes following a probability density function.

—The case of normal mode expansion of solutions. A criterion of convergence for
truncated expansion is given,
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The method is finally applied to the calculation of responses of rectangular rooms
using normal mode expansion. The influence of the number of terms in the expansion is
analvzed versus the excitation frequency.

2. THE REFERENCE PROBLEM

The problem of a three-dimensional viscoelastic continuous medium is considered. The

governing equations for harmonic motion were derived by Mandel (1966).

Equation of motion

Stress—strain relation

Boundary conditions

Notation

b volume of the continuous medium

Q driving angular trequency

u, displacement ficld

a,, stress ficld

Ea = Mo+ ) strain ficld

", components of the boundury normal untt vector

S boundary surface = S, U S,

S, part of the boundary surface where stresses are zero
S, part of the boundiry surtace where displacements itre zero
P mass per unit volume

Coui elastic constants

/1 driving force amplitude

n material damping loss factor

/ \/"

(1, 0, &, and f,, are complex quantities as a viscoclastic medium is considered).

Notes:

Qpu,+a,,+f =0 ink.

g, —(l +/.'I)Cl/k/‘:/\‘/ = O ln ;’.

(1

(2)

ey

(a) The stress strain relation (2) corresponds to the cuse of Voigt isotopic material

having cqual damping loss factor for Young and Coulomb Moduli.

(b) We assume that the solution (a,,, «,) is zero if and only if the driving force is zero.
This hypothesis excludes the cases of pure elastic media at resonances and boundary
conditions allowing rigid motion.

Let us introduce the cigenmodes of vibration, that we shall use luter. We consider the
clastic media obtained neglecting the damping in the stress-strain relation. The pth eigen-

mode is defined as the triplet (e, «f, a%,), which satisties relations (5)-(8).

Equation of motion

Wil +al,, =0, inl.

&)
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Stress—strain relation

0/, —C =0, inV. 6)

Boundury conditions
agtn, =0 onsS,, )
=0 onS,. (3)

All quantities in eqns (5)—(8) are now real.
Orthogonality properties of eigendisplacements and eigenstresses are given by the three
basic relations (9)—(11):

wﬁj pud de = E 6, )]
v
J U:/CJI:;UL de = Ep(srp (IO)
.
fﬁ,,ﬂ,‘,dv=£¢) (n
}

with £, being the norm of mode p, and
=1 if p=r
) .
Y20 if pE T (12)

3. FORMULATION OF THE PROBLEM USING ENERGY RESIDUAL FUNCTIONAL

Let us introduce the two spaces: Z, space of admissible complex stress fields and U,
space of admissible complex displacement fields :

E={r,eL,(M)|t,n;=0 on S,} (13)
U= {VieH'(V)V,=0 on S, (14)

The puir (u,, 6,,) solution of the problem (1)-(4) is element of the space product U x Z.

In general, a pair (V,, t,)) does not verify eqns (1) and (2) and thus is an approximate
solution of the problem. To estimate the quality of the approximation, we introduce a
functional to measure the degree of verification of eqns (1) and (2) by the particular pair
(V.t).

The stress -strain relation will be considered first. Following works of Nayroles (1971),
Ladeveze (1975) and Guyader (1987), we define the energy residual functional ¢, (V.. 1,,)
by:

¢.: UxZ-R*
Vit) = o (Viit) (15)

(b(( Vl* rll) = J‘ RC {(T,, —(l +/")Cukl(’kl) (l +/'l> Ci;l':l(tl"l —(l +/'7) Cl"l’!eu)*} dU (16)
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with

Re{ }: realpart
{ )*: complex conjugate
e = (Vi + Vie).- (17)
The functional ¢, is a quadratic form ; and verifies the relations:
¢c(Vi' rii) = Oc’tu = C:/klekl (18)
when
(br( l/ntl/) > Oebl',l # Cl/klekl' (19)
From a physical point of view, the functional represents a residual energy resulting
from the imperfect satisfaction of the stress-strain relation (2).

In the same way, the functional ¢ (V. ,)) is introduced in order to measure the error
of satisfaction of the equation of motion (1) :

s L s .
duld,. 1) =J {(r,,.,+pQ";" +_/,)pQ:(r,,_,+pQ~Vl+j‘)*}d,-, (20)
.

This functional is a residual kinetic encergy, giving the degree of fulfilment, by a pair (7,
7,,) of the equation of motion (1):

GuVit,) =0er1,, , +p°V,+/=0 inV (21)
PulV.t) > ()ct-!',,‘,+pQZV‘ +/,#0 in/V. (22)

The global functionat :
‘/)(l/nr:/) = (br(Vnru)"—(bM(Vnrl/) (23)

is a quadratic form, greater or equal to zero, such that:

: 24
T,j—-Ci/k,ek, = 0 n V‘ ( )

oVt = 0@{

To find the solution of the reference problem consists in the determination of the stress
and displacement fields satistying the boundary conditions and annulling the functional
¢(V,. 1,,). However, from a mathematical point of view, it is simpler to minimize a functional
than to annul it,

Thus Guyader (1987) introduced a formulation for the reference problem using the
residual functional ¢

find the pair (4, 0,)e Ux Z, such that:
P(u,.0,,) = min PV, 7,). (25)

From ua physical point of view, the solution is now obtained by looking for a smallest
residual as possible ; if zero is reached the exact solution is found, while if the value of the
functional remains greater than zero an approximate solution is obtained.

The quality of an approximation can be estimated from the functional value, the
smaller the residual the better the approximation. Moreover it is possible to relate energy
uncertainty bounds to the functional value, as will be shown in the next section.
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4. KINETIC ENERGY UNCERTAINTY BOUNDS OF IMPERFECTLY DESCRIBED
DISPLACEMENT FIELDS

Let us introduce the following new functional, which, in fact, is a norm in the space
product Ux X:

!

ﬂ V:‘ f,, ﬂ : = j-l« Re {{tu’ .'Cr'jkl(l +j’7)ekl) ﬁ:{}g Ci;p!g(rpq - Cpqu(l +}.ﬂ)€,,)‘} dl’

) 1 R
+J\ {(T‘I-J+pn‘ V“)_s(r,]'j*'pﬂu Vi).} dL‘. (26)
v Q-

There is an obvious relationship between the norm (26) and the residual functional ¢(V,
7,,) 5 it will be used in the following.

The stress and displacement fields are expanded over the eigenstress and eigen-
displacement fields of the elastic medium:

n= |

V,= Y bu. (28)

"=t

a, and b, arc complex numbers. After substitution of modal expansion (27) and (28} into
(26) and using (9), (10) and (11), we obtain;

, e 2 . w, n pd
“ Vn ra;” o= Z (“n —'(l +/n)bnt /({ +q~) +|au N —bu " ) [5,,. (29)
w1 Q W,
£, :is the norm of the nth mode.
Let us ook now at the kinetic energy of the displacement field V;:
(V) = j P2 V,|? do. (30)
.

Introduction of the modal expansion (28) into (30) and use of orthogonality propertics
gives, after calculations:

E 2

.0
V) = T bl E,. 31

| n

In the Appendix, the following lower bound of the norm is obtained :

R £ ’QI
Vit 1P 2 Y hal? = TLE, (32)
LE ] wn
with
ﬂ=%(g-&a+m~hﬂb (33)
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Fig. 1. Variation of function I, versus Q . for different damping loss tactors.

and

2+/'r[+r]:

|
Q:( +n7)+

X, =

(34)

Comparison of expressions (32) and (31) shows that the lower bound of the norm is
the sum of the modal kinetic energies weighted by the factor I7,. When [, > |, the cor-
responding mode has an inftuence on the norm lower bound, amplified compared to that
on the kinetic energy. When I, < | the opposite situation is observed. When M, = | the

mode has the same influence on the kinetic energy and the norm lower bound.

The weighting function T, is plotted versus Q/e, in Fig. |, The three previous situations
£ g g

are possible depending on the driving frequency if':

w,<Q [,-1

w,xQ [,y 2=T,<]

@, > Q r"—»(‘;’z"> =T, >

In order to relate the kincetic encrgy and the norm, let us define the factor I as:

= Min I,

n= ], s
Ustng (31), (32) and (38) gives an upper bound for kinetic energy
T(V) < I Vir, 3T

This inequality is the basis for the bounding of the exact kinetic energy.

(35)

37

(38)

(39)
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Fig. 2. Vanation of factor I with frequency.

The stress and displacement ficlds considered previously are written as the difference
between the exact (. @,)) and the approximate solutions : (4, 6,,)

T, =0,—0, (40)
V, = u,—,. “n
It follows from (39}, (40) and (41), that the following relation hokds
9 “611_61/‘ Hi—l}, “:
T(,—a,) € - (42)
r
A simple calculation shows that
ﬁau-éu‘“:‘dvn: = ‘{ﬁ(&vé’u)' (43)

[One needs only to use (40) and (41) in (26) and remember that the exact solution verifies
(1) and (2).] It follows from (42) and (43) that:

T(u,~ 1) < Plai, 6,3/1. {44}

The kinctic energy defined in (30) is the square of the norm of L,{({/). Thus one has:

T = T, =) € JTw) < ST+ /T, —w,). (45)

Then replacing T, —u) with (44), one obtains:

= [PEED ¢ iy < Ty (20t (46

These bounds on the kinetic energy depend only on the approximate solution (4,,, &) and
on the factor I« relation (46) gives an energy uncertainty range related to the imperfection of
description of the vibration ficlds as measured by the residual functional.

Incqualities (46) show that the smaller the residual functional the narrower the bounds;;
however, the factor I also plays an important role. Typical variations of the factor I' versus
frequency are plotted in Fig. 2. One can see that T is strongly variable with frequency and
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takes a minimum value equal to n°/2. at resonance frequencies. As a consequence, for a
given measure of the imperfection of the vibration fields description (that is to say for a
given functional value), the energy uncertainty range is strongly amplified near resonance
frequencies, especially for low structural damping.

From a physical point of view, this tendency may be understood as a high sensitivity
of the vibration response of structures at resonances.

In the most general case, since the eigenfrequencies of the continuous medium are
unknown, it is then necessary to take into account the smaller value of I whatever the
frequency. that is to say n°/2. The uncertainty range is then amplified at each frequency
especially for weak damping. The bounds of kinetic energy now depend only on the
approximate solution (d,,, 4,) and the structural loss factor :

26, 6,) @
"

Y 2¢(12l' él/)
h

JTG) ~ < VT < JTW) +

5. UNCERTAINTY BOUNDS OF DEFORMATION ENERGY FOR IMPERFECTLY
DESCRIBED STRESS FIELDS

The calculations are presented briefly, since the same procedure as in Section 4 for
kinetic energy must be employed in the present case. The deformation energy £(z,;) of the
stress ficld t,,€ Z is given by :

E(r,) = J Re {7,C i *td) de. (48)
.
Inscrtion of the modal expansion (27) in this expression, gives after calculations:
I . E,,
g) = R 49
E(tu) "gl !“nl i +n. ( )

In the Appendix, the following result is demonstrated

syl > 3 Al 12 (50)
with
A, = L=+ B +07) + &-ﬁngr (51
Q w,
and
fo = Ehal M7y (52)

. . Q
|+2/'I]—r]‘+(|+'l‘)(;‘2

Comparison of eqns (49) and (50) shows that inequality (53) holds:

E(r,)) < Vit 7/A (53)



Uncertainty bounds for energy of vibration fields 179

with

A= Min A,. (54)

n=l,x

The previous relation (53) is formally identical to eqn (39) which is the basis for
bounding kinetic energy. Thus, following similar calculations as in Section 4, one obtains:

V E(d;) - /ﬂﬁ'A;é-”—)sE(a,,) S JVEG )+ d)(u a,,) (55)

Bounds of deformation energy have the same form as bounds for kinetic energy (46),
I is just replaced by A. In addition, a comparison of A, and I, shows that both quantities
take close values, in particular their minima are equal to ;2.

In the general case, since the eigenfrequencies of the continuous media are unknown,
the following bounds of deformation energy are obtained :

VE@G,))— V200 d,) < E(o;) S JEG)+ X

/2. 6,)) (56)
T

The similarity of the results for kinetic and deformation energy makes it unnecessary to
study both cases, and in the following only kinetic energy will be studied, the extension to
deformation encrgy being obvious.

6. PROBABILISTIC ASPECT FOR UNCERTAINTY BOUNDS OF KINETIC ENERGY

FFrom a physical point of view the kinctic encrgy bounds (47) are reached when the
error of description is concentrated on one mode excited at resonance, that is to say:

iy—6, = b,a,
. , and Q= w,. (57)
U~ u;, = a,,

From a statistical point of view, such a situation is very improbable, and generally the
error of description is distributed over all modes. Then

T(u,—u,) = Z |b, | Z T, (u,— (58)
na | 2y n=
where T,(1, — ) is the modal kinetic energy of the difference between exact and approximate
displacement fields.
Let us define the ratio £,. of modal to total error of kinetic energy :

T, (1, — 1)
/I,, = m (59)

It is obvious that A, is a real number, verifying
O<h, <l (60)

and

Y h=1 (61)
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Using (39) and (32), one obtains :
o, =6, u~i | > Y T —i) (62)
n=1

Then, replacing the norm by the residual functional as stated in (43), gives:
T(u,—u) < ¢(u,.6,)/7 (63)
with

=3 [Lh,. (64)

Expression (63) is similar to (44), and as a consequence we obtain the kinetic energy
bounds in the same way as in Section 4:

i [P < i« ey [P0 “’5’
/

The value of y depends on that of A,. that is to say on the distribution over the modes
of the crror on kinctic energy. This distribution depends on the case of interest, however it
is posstble to give an expected value of v, replacing the previous deterministic presentation
by the following statistical approach.

Let us consider the set @ of the modes of the continuous medium and define the
probability /1, of mode # to participite in the error on kinetic energy with 0 < /1, < 1:

Z h, =1.

=1
Let us introduce the random variable 37

20— — — R

mode # — — — —y’(mode n) = T,

The expected value of 7" 1s

EG) = Y b (66)

n o |

The expressions 7 and £(;7) are similar, the ratio &, being replaced by the probability
h,. Thus, E(;°) can be interpreted as a statistical estimation of ¢, and the following statistical
estimation for bounds of kinctic energy are obtained :

S [P < iy < Jriige [Pt (7

As an example, we assume that the probability /&, is distributed following Poisson’s
law and that the continuous media s a simply supported beam in flexural motion. Then
the eigen angular frequencies are given by :
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Fig. 3. Variation of £(;) versus driving frequency for three values of the parameter 4 of Poisson's
law. Curve 1o 4 = S curve 204 = 10 curve 3 4 = |9,

\/{;'I:: n il
m, = e
12p L-°

where £ is the Young's Modulus and p the mass by unit volume of the beam material, L
15 the length and A the thickness of the beam.

Figure 3 shows the expected value E(y) versus the driving angular frequency. Three
curves are presented for different values of the parameter 4 of Poisson’s faw. The mean
value and the standard deviation of Poisson’s faw are respectively equal to 4 and \/}., from
a physical point of view a small value of 4 indicates that the error is concentrated over 2
few modes of low resonance frequencies, a large value indicates that the error is distributed
over a lurge number of modes situated at higher frequency. It can be noticed, from Fig. 3
that the following tendencies apply :

——at a given frequency, £(;7) decreases with 4 indicating that the bounds on energy
increase when the error is concentrated over a smaller number of modes ;

—E(y") is a decreasing function of the frequency, and tends to unity. E(y') is then
considerably greater than 5°/2 and the statistical distribution of the error of description
provides u strong reduction of the uncertainty range of kinetic energy when compared to
the deterministic bounds (47).

7. UNCERTAINTY BOUNDS OF KINETIC ENERGY FOR APPROXIMATE SOLUTIONS
OBTAINED BY TRUNCATED MODAL EXPANSIONS

The expansion of solutions over the normal modes of vibration is a widely used method
to approximate the displacements and stress ficlds. The main problem that arises when
applying the method is the choice of the modes that have to be taken into account to give
good approximations. A criterion of convergence is obtained using the bounds of kinctic
energies to estimate the quality of the approximate sofution.

Let us consider an approximate solution (d,,. #,) obtained by truncated modal expan-

sion:
(ir{ = z ana:’j (68)
nei
i =Y hou. (69)

nsf
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I is the set of the indices of modes taken into account in the calculation of the
approximate solutions. In general, the following two particular sets are considered :

(a) I’ is the set of indexes of modes for which resonance frequencies are located in a
band around the excitation angular frequency:

1,= {NGNI(J),,E[QU.Q,]}, (70)

(b) I} is a particular case of set I', obtained by setting Q, = 0 in order to take into
account all the modes for which resonance angular frequency are lower than Q,:

Iy = {neNlw,e[0.Q,]). (71)

To determine the kinetic energy uncertainty bounds associated with approximate
solutions (68) and (69), it is possible to use the inequalities (46). However these bounds are
generally large and for particular approximate solutions, narrower bounds can be obtained.

Let us consider the differences between the exact and the truncated modal expansion
of stress and displacement fields:

o’n[’—d.:j = Z ana7i (72)
neN-/

u—u, = Z b (73)
neN -/

Introducing (72) and (73) into incquality (32) gives

hl WQ:
oy, —di =i’ < Y Falb)* L E, (719)
neN -/ w,
It follows, using (43), that
.. . ,Q° . .
¢(“/’aij) €9 Z !bnl- ~_3En = ()T(ll‘ _“1) (75)
neN-—/ n
with
o= Min [, (76)
neN-/

This inequality (75) is equivalent to (44) ; thus we obtain, in the same way as in Scction 4,
the bounds:

ST [R8D < [ < S [P (77)

(77) is formally equivalent to (46) but § is always greater than [T, thus, for a given
measure of the error of description by the functional ¢(i,, 4,;). the uncertainty bounds are
narrower for modal expansion approximation than for the general case.

Let us now examine the values of J for the particular sets I and 7;,:
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0= Min T, (78)
neN-I
dy, = Min T,. (79)
neN-1I,
After calculation one obtains:
= mi <Q'>:<IQ % :+ : 1 ) 80)
c=DN \a/\lag "o Tt "

with

1,—_—(2+/'r]+r/3)/(<%')~(l+r7:)+l> (81)
S A P A K o T A s
0= (@) -5+ mder-a)] .

An examination of expressions (80)-(82) shows the two basic tendencies:

(a) o increases as 2, decreases and/or Q increases, that is when the number of modes
taken into account for the calculation increases. The same tendency remains true for 8y
that increases with Q,. So. when the number of modes taken into account increases, the
kinctic energy uncertainty bounds become narrower as the result of both decrease of the
residual functional and increase of 87 (resp. 83).

{b) The asymptotic values obtained in the case £, > Q are:

hi

{Q,\
(5;» = (()) > l (84)

dy is thus much greater than o7, and for a given value of the residual functional, the
approximation using the set [, gives smaller uncertainty bounds than the approximation
using /',

! (83)

8. MODAL EXPANSION OF THE ACOUSTIC RESPONSE OF A ROOM
Let us consider a square room with Necumann boundary conditions. The acoustic
pressure p and displacement X, solutions of the problem must satisfy the following equa-
tions:

pQ X, +p, =0 inV (85)
pHpcil+mX, =5 in¥ (86)
X,=0 onsS, (87)
with
128 volume of the room
S: boundary surface of the room
p: mass per unit volume of acoustic medium
c: velocity of sound
n: damping loss factor

MS 2720
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§I  acoustic sources
X,: normal acoustic displacement on boundary.

This problem is formally identical to the reference problems {(1)-(4). and therefore
introducing the residual functional (88). the results of previous sections can be applied. In
particular the bounds (77) can be used to study the validity of truncated modal expansion

1

H{p. X)) = J‘ (i ~pQU X 4 p 7o + p+pt (1 + Y, =) e (i;:__;) de. (88)
-

The sotution of problems (87)-(89), when expanded over eigenmodes. takes the form:

p= ;Z'EZ, A cos o \, LOS L x cos :i (89)

X, = ;ﬂ;;lg" L| n e x‘ cos ’Z?f X, Cos 'Zi 90
X, = —(Z’:mz;;:l I'H” 1:7: cos ';j X, sin r;m Xy Cos ;j Xy 9hH
X, = _2;,..2,)2/ pg" ;n‘ cos mj Xy COS ';m X, sin ;n‘ X (92)

with
Il:"l *r
A"I"' = )
[ —..( +/’?}<A f""’) ]
Ly Ly L nm mn rn ( dv, ds d 93)
X COS . X, COS -~ X4 €08~ X 5(x,, X Xy dyy day dx R
. N . %L' ) L2 2 va‘ 3y 1V X Xy L) 3
L if n=20
12 i m #0
Gy | eigen angular frequency of the room mode (1, m, r)
L, L. Ly: dimensions of the room
I sct of indexes (n, mi, r).

Let us consider a pulsating rectangular source of dimensions (. a., a,) located at (=,
Za 4

Introduction of the approximate solutions (3, ,\7,) into the residual functional (88)
gives, after calculations:

P(p.X) = (a,a,a, ZZZL’ ZL (S,(mS.(m)S, (r))> /{!C:(l w0 (98)

(n,m. ryet
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Fig. 4. Room acoustic energy versus excitation frequency for three modal expansions (Q, = 4000,

6000, 8000 rd s '). Characteristics of the room: L, = L, = L, = | m: n = 0.0, Characteristics of
the source: (2,. 2. 29 = (012, 0.5.0.5) 5 (a0 @) = (0.02, 0.04, 0.04).

with

L (. nr dq, . nm d,
S,(n) = (sm (:,+ ,,) —sin <:,— 7))
nm L, 2 L, 2 itn #0. (95)

S.(0) = g,

It can be seen from expression (94), that the residual functional decreases and goes to
zero as the set [ increases.
The approximate acoustic energy of the room is given by :

o 1pl? ' LiLsLy
E = VTN de Amm 96
) J: pU+n) 0 pct (l +n° )g:,..z,,;l Entmt, 0
If the set of indices [ is chosen in order to be an 7 set, then:
n om? P
I=I{,={(n m.r)eN’ Ll+l§+L;<Q,}. 97

The bounds (77) can be used to give uncertainty bounds of acoustic energy, associated
with a truncated modal expansion.

Figure 4 shows the influence of the number of modes taken into account in modal
expansions of the acoustic energy.

At resonances the acoustic energy is almost perfectly described, especially when the
excitation angular frequency is well below Q. Between two resonances the energy uncer-
tainty is large, especially when the excitation angular frequency is close to Q,.

As a general rule it can be said that for a given modal expansion, the higher the energy
level, the better the description.

9. REMARKS

(a) Local energy. Bounds have been given for the energy of the whole medium. If one
is interested in local energy, however, for example local kinetic energy ¢(V)):
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t(b)y =1 pQ° 1T de. withe' <

¢’ local volume, (98)

it is possible to obtain bounds in the following way.
First let us remark that the local energy is less than or equal to the total energy:

(V) < 7(V).
Then, applying this inequality to the particular displacement field.

Vo=u—u,

and using (44) one obtains:
tu,— ) < d(i.a,)T. (99)

In the same way as in Section 4 this gives the bounds for local kinetic energy:

- [P0 <y < iy [P (100

These bounds show that the absolute uncertainty for local or total energies is the
same, and that the relative uncertainty is greater for local encrgy. This is consistent with
experimental results, as it s more difficult to measure local quantities precisely than it is to
measure global ones.

In addition it can be said that it s impossible to find narrower bounds than (100) as,
in the general case, the error of description can be concentrated in the local volume
considered.

(b) The cuse of non-proportional damping material. To derive the energy bounds we
assume a particular case of viscoclastic material satisying the stress -strain relation (2), i.c.
an isotropic Voigt material with equal loss fuctors for Young and Coulomb moduli. For
more complicated materials the problem is even greater (o solve, as orthogonality propertics
of elastic eigenmodes are not true for such materials.

However it is possible to simply obtain bounds using the fuct that for a given system,
an increase of damping decreases the response and thus kinetic and clastic energy. For
example, let us consider un isotopic Voigt material with different damping loss factors for
Young and Coulomb moduli:

L+ fnp) (1o

G + /). (102)

The stress-strain relation of that matertal is not of the form given in eqn (2), and the

exact kinetic encrgy 7(«,) cannot be boundced dircctly with (47).

Nevertheless, let us introduce the two associated problems, with same equation of
motion (1) and boundary conditions (3) and (4) but different stress-strain relations:

o, = {1+ M) Coniti (103)

g, = (1 + ma)C; wibusr (104)

Noting T,.(uf) [resp. T;(u”)]. the kinetic energy of the exact solution of the problem with
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stress—strain relation (103). [respectively (104)]. and assuming for example 7, > ng;, one
can say:

Te(uf) 2 T(u) 2 To(uf). (105)

As the stress-strain relations (103) and (104) are of the form of eqn (2). it is possible to
bound T (uf) and T(uf) with (47). and then use (105) to obtain:

STy - u——J'd’j’(""“"’ < VTl < T+ 220800 i0g)
£ G

with (d,,. 1), approximate solution and ¢ (.. d,;) [resp. ¢¢(1,, 6,,)]. residual functional built
with stress—strain relation [(103). (resp. (104)].

10. CONCLUSION

This work provides a method of bounding the kinetic and displacement energics of a
viscoclastic solid using a residual functional associated with statistically and kinematically
admissible stress and displacement fields. Compared to previous works of Skudrzik (1980,
1987) and Popplewell and Youssel (1979) and Popplewell ¢t al. (1981), our method is
general and gives the possibility of introducing statistical bounds and studying particular
types of approximate solution like modal expansion.

In this paper, the general case was studied first showing that the bounds on cncergy
depend on the value of residual functional and a factor strongly variable with frequency
(at resonance frequencies the bounds are amplified, especially for low structural damping).
Introducing the probability of @ mode to participate in the difference between exact and
approximate solution allows us to give an expected value of the factor and then to give
statistical bounds on energy considerably reduced when compared to that of the general
case. Finally, the method was applied to approximate solutions obtained with a truncated
modal expansion ; this gave a criterion of validity of the truncated expansion,

Our attention was focused on kinetic energy as this quantity is generally used in vibro-
acoustic problems, however, we show that the results can be extended to displacement
energy.
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APPENDIX

Let us start with expression (29) of the norm :

Jl+n')+

L

./
W, lt= ¥ (u.—(u,’,,)b,

¢ .
—l.1,1-=0 V¥n
ia,
¢ o
— it " >0 Vv
ca;

That is to say:

N i, Q\w,
(a,— (1 +/mb /1 +0°) + (u,(—é —b,,;}:)%— =0 Vvn

Relation (AS) is venitied, and then the minimization conditions reduce to
a, = h,x,
with
2, = 24+ i+ L+ (L.

Introducing (A6) in (A1) one obtiuns:

. AR ¢ LA
MU ed" 2 Y, Uy - 1hI°E,

1 (r,
with

2

a,=1— /’(l +1%) +

r.=(

Inequality (A8) is used in Section 4.

s, Q : e
x, Q- -, w, /2",

0 Ql*
G _p ]
g ™ w,,} )E"

For a given displucement field ', one minimizes the norm with respect to the stress field g,,. writing :

(AD)

(A2)

(A3)

(Ad)

(AS)

(A6)

(AT)

(A8)

(A9)

A second lower bound of the norm is obtained minimizing with respect to ¥, for a given stress field 1,

Taking into account the modal expansion of ', one writes:
& PR
i THae,ii" =0 Vn

LT .
l‘-lr” LTt > 0 vn

"

After calculation one obtains

Vot 7 2 Y Alal’E,

n -1
with:

)

,

. 1 : 2
A, ={1=(1+/mp)/(L+n¥)+ Q ﬂ"r/;:‘

and
B.= C+ i+ L+ 2,0+ +(L+nH)Q% o)),

Inequality (A12) is used in Section §.

(A10)

(ALD)

(AL2)

(Al3)

(Al4)



